Abstract

The HIV problem is studied by version of delay mathematical models which consider the apoptosis of uninfected CD4+ T cells which cultured with infected T cells in big volume. The opportunistic infection and the apoptosis of uninfected CD4+ T cells are caused directly or indirectly by a toxic substance produced from HIV genes. Ubiquitously, the nonlinear incidence rate brings forth the increasing number of infected CD4+ T cells with introduction of small time delay, and in addition, there also exists a natural time delay factor during the process of virus replication. With state feedback control of time delay, the bifurcating periodical oscillating phenomena is induced via Hopf bifurcation. Mathematically, with the geometrical criterion applied in the stability analysis of delay model, the critical threshold of Hopf bifurcation in multiple delay differential equations which satisfy the transversal condition is derived. By applying reduction dimensional method combined with the center manifold theory, the stability of the bifurcating periodical solution is analyzed by the perturbation near Hopf point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.