Abstract

A competitive Lotka–Volterra reaction-diffusion system with two delays subject to Neumann boundary conditions is considered. It is well known that the positive constant steady state of the system is globally asymptotically stable if the interspecies competition is weaker than the intraspecies one and is unstable if the interspecies competition dominates over the intraspecies one. If the latter holds, then we show that Hopf bifurcation can occur as the parameters (delays) in the system cross some critical values. In particular, we prove that these Hopf bifurcations are all spatially homogeneous if the diffusive rates are suitably large, which has the same properties as Hopf bifurcation of the corresponding delayed system without diffusion. However, if the diffusive rates are suitably small, then the system generates the spatially nonhomogeneous Hopf bifurcation. Furthermore, we derive conditions for determining the direction of spatially nonhomogeneous Hopf bifurcations and the stability of bifurcating periodic solutions. These results indicate that the diffusion plays an important role for deriving the complex spatiotemporal dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.