Abstract

The asymmetric dynamic behavior of clamped shallow spherical shells under a uniform step pressure of infinite duration is investigated. The solution of a linear eigenvalue problem yields the bifurcation paths and also the lower bound for the asymmetric dynamic snap-through buckling pressure. The asymmetric dynamic response of shells with a shape imperfection is studied. The asymmetric dynamic snap-through buckling load is defined to be the threshold value of the step pressure at which the asymmetric response shows significant growth rate. The snap-through buckling loads are obtained for a few shell parameters. The numerical results are compared with the available experimental results and they are in good agreement. Finally, a preliminary study of the phase planes is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call