Abstract
Usually, in order to investigate the evolution of a theory, one may find the critical points of the system and then perform perturbations around these critical points to see whether they are stable or not. This local method is very useful when the initial values of the dynamical variables are not far away from the critical points. Essentially, the nonlinear effects are totally neglected in such kind of approach. Therefore, one cannot tell whether the dynamical system will evolute to the stable critical points or not when the initial values of the variables do not close enough to these critical points. Furthermore, when there are two or more stable critical points in the system, local analysis cannot provide the information on which the system will finally evolute to. In this paper, we have further developed the nullcline method to study the bifurcation phenomenon and global dynamical behavior of the f(T) theory. We overcome the shortcoming of local analysis. And, it is very clear to see the evolution of the system under any initial conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.