Abstract
Bifurcation phenomena and chaotic behavior in cellular neural networks are investigated. In a two-cell autonomous system, Hopf-like bifurcation has been found, at which the flow around the origin, an equilibrium point of the system, changes from asymptotically stable to periodic. As the parameter grows further, by reaching another bifurcation value, the generated limit cycle disappears and the network becomes convergent again. Chaos is also presented in a three-cell autonomous system. It is shown that the chaotic attractor found here has properties similar to the famous double scroll attractor. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.