Abstract

A dynamic model was set up for the two-span rotor-bearing system with coupling faults of crack and pedestal looseness supported on three plain journal bearings. The nonlinear dynamic behaviors that induced by crack, pedestal looseness and coupling faults are numerically studied. There is quasi-periodic motion appearing in the cracked rotor-bearing system, and it within the sub-critical speed range in the pedestal looseness rotor-bearing system. There is chaotic motion appearing within the supper-critical speed range in the pedestal looseness rotor-bearing system. The pedestal looseness fault is the main influence on the coupling faults system, and there is Period-3 motion appearing in the system. The results may bring up theoretical references for fault diagnoses, dynamic design, and security running to rotor-bearing system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call