Abstract

A four-degree-of-freedom nonlinear transverse and torsional vibration model of spur gear transmission system for one-way clutch, two-shaft assembly was developed, in which the one-way clutch was modeled as a piecewise nonlinear spring with discontinuous stiffness, considering the factors such as the time-varying gear mesh stiffness, static transmission error, and nonlinearity backlash. With the help of bifurcation diagrams, time domain response diagrams, phase plane diagrams, and Poincaré maps, the effects of the excitation frequency and the torsional stiffness of one-way clutch on the dynamic behavior of gear transmission system for one-way clutch, two-shaft assembly are investigated in detail by using Runge-Kutta method. Numerical results reveal that the system response involves period-1 motion, multiperiodic motion, bifurcation, and chaotic motion. Large torsional stiffness of one-way clutch can increase the impact and lead to instability in the system. The results can present a useful source of reference for technicians and engineers for dynamic design and vibration control of such system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.