Abstract

This paper describes a new approach to study the nonlinear dynamical behaviors of a belt-driven two-coupled friction oscillator. First, using Buckingham’s π theorem, several dimensionless and physically meaningful parameters are derived. Their relationships with the steady state responses of the system are revealed through numerical simulations. Then a new mapping tool named as sticking phase plot is developed to record the transition process of stick–slip motion. It intuitively shows how bifurcation occurs in sticking region and transforms the dynamical responses. The bifurcation diagrams of the system are obtained by sweeping the dimensionless parameters. Some extraordinary bifurcation phenomena are observed in this system. By using sticking phase plot, it is found that the bifurcations can be broadly divided into four main categories: the Border-Collision Bifurcation, the Grazing-Sliding Bifurcation, the Multi-Sliding Bifurcation, and the Fixed-Point Bifurcation. New nonlinear phenomena are found herein, including chaos caused by the Border-Collision Bifurcation and the Sliding Bifurcations. The local and the global changes caused by the Fixed-Point bifurcation are also observed. In numerical simulation, we adopted the LVIM method proposed by the authors, which can be used to integrate non-smooth systems very accurately and efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.