Abstract

In the paper, a Leslie-Gower predator-prey system with harvesting and fear effect is considered. The existence and stability of all possible equilibrium points are analyzed. The bifurcation dynamic behavior at key equilibrium points is investigated to explore the intrinsic driving mechanisms of population interaction modes. It is shown that the system undergoes various bifurcations, including transcritical, saddle-node, Hopf and Bogdanov-Takens bifurcations. The numerical simulation results show that harvesting and fear effect can seriously affect the dynamic evolution trend and coexistence mode. Furthermore, it is particularly worth pointing out that harvesting not only drives changes in population coexistence mode, but also has a certain degree delay. Finally, it is anticipated that these research results will be beneficial for the vigorous development of predator-prey system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.