Abstract

Knowledge of the transition point of steady to periodic flow is becoming increasingly important in the study of laminar–turbulent flow transition or fluid–structure interaction. Such knowledge becomes available through the Newton–Picard method, a method related to the recursive projection method. Here, this method is applied to study the bifurcation behavior of the flow in a driven cavity between Reynolds number 7500 and 10,000. For the time discretization the θ-method is used and for the space discretization a robust finite-volume method. The implicit relations occurring after linearization are solved by the multilevel ILU solver MRILU. The results presented in this paper confirm findings from earlier work with respect to the transition point. They give more detailed information on unstable modes and clarify time series found by others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.