Abstract
In this paper, a traditional five-level cascaded H-bridge inverter is studied and regulated by a proportional-resonant (PR) controller. In order to extend the range of the gain of PR controller, for the purpose of achieving a fast response, a time-delayed feedback controller (TDFC) is used. Similar to the pulse width modulation (PWM) current-mode single phase H-bridge inverter that exhibits bifurcation and chaos when parameters vary, we demonstrate for the first time that the cascaded H-bridge inverter also shows similar features. From the perspective of a discontinuous map, the cascaded H-bridge inverter generally displays extraordinary complexity. Moreover, a new virtual ergodic method (VEM) is proposed to establish the mathematical model of the whole system, which helps to understand the observed bifurcation phenomena. Simulation results are given to verify the analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.