Abstract
In this paper we study existence of nonradial stationary solutions of a free boundary problem modeling the growth of nonnecrotic tumors. Unlike the models studied in existing literatures on this topic where boundary value condition for the nutrient concentration $ \sigma $ is linear, in this model this is a nonlinear boundary condition. By using the bifurcation method, we prove that nonradial stationary solutions do exist when the surface tension coefficient $ \gamma $ takes values in small neighborhoods of certain eigenvalues of the linearized problem at the radial stationary solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.