Abstract
In this paper, we investigate the predator–prey model equipped with Fickian diffusion and memory-based diffusion of predators. The stability and bifurcation analysis explores the impacts of the memory-based diffusion and the averaged memory period on the dynamics near the positive steady state. Specifically, when the memory-based diffusion coefficient is less than a critical value, we show that the stability of the positive steady state can be destabilized as the average memory period increases, which leads to the occurrence of Hopf bifurcations. Moreover, we also analyze the bifurcation properties using the central manifold theorem and normal form theory. This allows us to prove the existence of stable spatially inhomogeneous periodic solutions arising from Hopf bifurcation. In addition, the sufficient and necessary conditions for the occurrence of stability switches are also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.