Abstract
In this paper, a diffusive activator–inhibitor model in vascular mesenchymal cells is considered. On one hand, we investigate the stability of the equilibria of the system without diffusion. On the other hand, for the unique positive equilibrium of the system with diffusion the conditions ensuring stability, existence of Hopf and steady state bifurcations are given. By applying the center manifold and normal form theory, the normal forms corresponding to Hopf bifurcation and steady state bifurcation are derived explicitly. Numerical simulations are employed to illustrate where the spatially homogeneous and nonhomogeneous periodic solutions and the steady states can emerge. The numerical results verify the obtained theoretical conclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.