Abstract

We propose a mathematical model for investigating the efficacy of Countermeasure Competing (CMC) strategy which is a method for reducing the effect of computer virus attacks. Using the Centre Manifold Theory, we determine conditions under which a subcritical (backward) bifurcation occurs at Basic Reproduction Number $R_{0}=1$. In order to illustrate the theoretical findings, we construct a new Nonstandard Finite Difference Scheme (NSFD) that preserves the bifurcation property at $R_{0}=1$ among other dynamics of the continuous model. Earlier results given by Chen and Carley [The impact of countermeasure propagation on the prevalence of computer viruses, IEEE Trans. Syst., Man, Cybern. B. Cybern. 2004] show that the CMC strategy is effective when the countermeasure propagation rate is higher than the virus spreading rate. Our results reveal that even if this condition is not met, the CMC strategy may still successfully eradicate computer viruses depending on the extent of its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.