Abstract

The dynamics of a diffusive Nicholson’s blowflies equation with a finite delay and Dirichlet boundary condition have been investigated in this paper. The occurrence of steady state bifurcation with the changes of parameter is proved by applying phase plane ideas. The existence of Hopf bifurcation at the positive equilibrium with the changes of specify parameters is obtained, and the phenomenon that the unstable positive equilibrium state without dispersion may become stable with dispersion under certain conditions is found by analyzing the distribution of the eigenvalues. By the theory of normal form and center manifold, an explicit algorithm for determining the direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.