Abstract
In this paper, a system of neural networks in neutral form with time delay is investigated. Further, by introducing delay [Formula: see text] as a bifurcation parameter, it is found that Hopf bifurcation occurs when [Formula: see text] is across some critical values. The direction of the Hopf bifurcations and the stability are determined by using normal form method and center manifold theory. Next, the global existence of periodic solution is established by using a global Hopf bifurcation result. Finally, an example is given to support the theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.