Abstract
In this article, a study of long-term behavior of reaction–diffusion systems augmented with self- and cross-diffusion is reported, using an augmented Gray–Scott system as a generic example. The methodology remains general, and is therefore applicable to some other systems. Simulations of the temporal model (nonlinear parabolic system) reveal the presence of steady states, often associated with energy dissipation. A Newton method based on a mixed finite element method is provided, in order to directly evaluate the steady states (nonlinear elliptic system) of the temporal system, and validated against its solutions. Linear stability analysis using Fourier analysis is carried out around homogeneous equilibrium, and using spectral analysis around nonhomogeneous ones. For the latter, the spectral problem is solved numerically. A multiparameter bifurcation is reported. Original steady-state patterns are unveiled, not observable with linear diffusion only. Two key observations are: a dependency of the pattern with the initial condition of the system, and a dependency on the geometry of the domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.