Abstract
Continuous dynamical systems that involve differential equations mostly contain parameters. It can happen that a slight variation in a parameter can have significant impact on the solution. The main questions of interest in this chapter are: How to continue equilibria and periodic orbits of dynamical systems with respect to a parameter? How to compute stability boundaries of equilibria and limit cycles in the parameter space? How to predict qualitative changes in system’s behavior (bifurcations) occurring at these equilibrium points? This chapter will also cover the classification of bifurcations in terms of equilibria and periodic orbits. Especially it will present the specific bifurcation called ”Hopf bifurcation” which refers to the development of periodic orbits from stable equilibrium point, as a bifurcation parameter crosses a critical value. Since the theory of bifurcation from equilibria based on center manifold reduction and Poincare-Normal forms, the direction of bifurcations for the mathematical models will also be explained using this theory. Finally, by introducing several software packages and numerical methods this chapter will also cover the techniques to determine and continue in some control parameters all local bifurcations of periodic orbits of dynamical systems and relevant normal form computations combined with the center manifold theorem, including periodic normal forms for periodic orbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.