Abstract

Abstract The electrical excitation (action potential generation) of sinoatrial node (cardiac pacemaker) cells is directly related to various ion channels (pore-forming proteins) in cell membranes. In order to analyze the relation between action potential generation and ion channels, we use the Yanagihara–Noma–Irisawa (YNI) model of sinoatrial node cells, which is described by the Hodgkin–Huxley-type equations with seven variables. In this paper, we analyze the global bifurcation structure of the YNI model by varying various conductances of ion channels, and examine the effects of these conductance changes on pacemaker rhythm (frequency of action potential generation). The coupling effect on pacemaker rhythm is also examined approximately by applying external current to the YNI model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.