Abstract

In this paper, we study the dynamics in delayed nonlinear financial system, with particular attention focused on Hopf and double Hopf bifurcations. Firstly, we identify the critical values for stability switches, Hopf and double Hopf bifurcations. We show how the parameters affect the dynamical behavior of the system. Secondly, the normal forms near the Hopf and double Hopf bifurcations, as well as the classifications of local dynamics are analyzed. These bifurcations lead a chaotic system to be stable states, such as the coexistence of a pair of stable equilibria or a pair of stable periodic oscillations, and then chaos disappears. Numerical simulations are presented to verify the analytical predictions. Furthermore, detailed numerical analysis using MATLAB extends the local bifurcation analysis to a global picture, namely, a family of stable periodic solutions exist in a large region of delay and “chaos switchover” phenomenon appears. Therefore, in accordance with the above theoretical analysis, reasonable parameters can be designed in order to achieve various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call