Abstract

Metal-organic framework (MOF), an emerging class of porous hybrid inorganic-organic crystals, has been applied for various environmental remediation strategies including liquid and air filtration. In this study, the role of the zeolite imidazole framework-8 (ZIF-8) was explored on the charge trapping ability and its contribution to capturing the targeted pollutants of NaCl nanoparticles and SO2 gas. Poly(lactic acid) fibers with controlled surface pores were electrospun using water vapor-induced phase separation, and the fiber surface was uniformly coated with ZIF-8 crystals via an in situ growth method. As a novel process approach, the corona charging process was applied to the ZIF-8 grown webs. The ZIF-8 promoted the charge trapping in the corona process, and the charged ZIF-8 web showed a significantly improved electrostatic filtration efficiency. Also, the charged ZIF-8 web showed an enhanced SO2 capture ability, both in the static and dynamic air flow states, demonstrating the applicability as a bifunctional filter for both particulate and gaseous matters. The approach of this study is novel in that both particulate and gas capture capabilities were associated with the charge trapping ability of ZIF-8, implementing the corona charging process to the ZIF-8 webs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call