Abstract
α-Glucosidase, which directly involves in the metabolism of starch and glycogen and causes an increase in blood sugar level, is the major target enzyme for the precaution and therapy of type II diabetes. Based on the previous work, we adopted a post-synthetic modification method to encapsulate Tb3+ into Ce-MOF nanozyme which owned mixed valence states. Tb@Ce-MOF displayed induced luminescence characteristic and exceptional oxidase-like activity that could oxidize colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to blue ox-TMB. α-Glucosidase can hydrolyze the substrate l-ascorbic acid-2-O-α-d-glucopyranosyl (AAG) to generate ascorbic acid (AA), which could increase the Ce3+/Ce4+ redox valence mode in Tb@Ce-MOF, leading to the inhibition of the allochroic reaction of TMB and the decreased absorption of ox-TMB at 652 nm. The energy transfer (EnT) process from Ce3+ to Tb3+ will enhance due to the increased Ce3+/Ce4+ mode in Tb@Ce-MOF, which will result in an enhanced fluorescence signal of Tb@Ce-MOF at 550 nm. But the addition of inhibitor acarbose will inhibit the above process. We have constructed a dual-mode detection platform of α-glucosidase and its inhibitor via colorimetric and fluorometric method. The linear range of α-glucosidase were 0.01–0.5 U/mL (colorimetric mode) and 0.8–1.5 U/mL (fluorometric mode), respectively, with a detection limit as low as 0.0018 U/mL. Furthermore, our approach was also successfully employed to the analysis of α-glucosidase in serum samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.