Abstract

AbstractA series of pyridine functionalized porous organic polymers (POPs‐Py&PPh3) have been synthesized by polymerizing tris(4‐vinylphenyl)phosphane and 4‐vinylpyridine. The pyridine moieties in the copolymer materials contribute to CO2 adsorption and promote the subsequent conversion of CO2. The POP supported Ru catalyst (Ru/POP3‐Py&PPh3) shows a high catalytic activity (TON up to 710) in the N‐formylation of various primary and secondary amines with CO2/H2, affording the corresponding formamides in good yields (55–95%) under mild reaction conditions. The heterogeneous catalyst can be easily separated from the reaction system and reused for at least eight cycles in the N‐formylation of morpholine.magnified image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.