Abstract
Lithium-sulfur (Li-S) batteries, recognized as one of the most promising next-generation energy storage systems, are still limited by the "shuttle effect" of soluble polysulfides (LiPSs) on the cathode and the uncontrolled growth of lithium dendrites on the anode. These issues are critical obstacles to their practical application. Currently, many researchers have addressed these challenges from a unilateral perspective. Herein, we propose bifunctional hosts based on high-entropy selenides (HE-Se) to simultaneously tackle the persistent problems on both the positive and negative electrodes of Li-S batteries. On the one hand, HE-Se interacts with polysulfides to promote their conversion, effectively mitigating the shuttle effect. On the other hand, HE-Se provides multiple lithophilic sites during the initial nucleation of Li+, which reduces overpotential and exhibits excellent lithophilicity and cyclic stability. As a result, Li-S batteries incorporating the HE-Se hosts demonstrate outstanding performance in terms of rate capability and cycling stability. Additionally, the porous lithophilic HE-Se structure offers sufficient nucleation sites, inhibits the growth of dendritic lithium, and accommodates volume changes during charging and discharging cycles. This study highlights the potential of sulphophilic/lithophilic high-entropy materials in designing advanced Li-S batteries and encourages further exploration in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.