Abstract

Gold nanoparticles (AuNPs) on carriers have received wide attention as catalysts as a result of their excellent stability and catalytic performance. Herein, we report the design and synthesis of hollow silica-supported gold nanocatalysts (SNPs@AuNPs) composed of highly dispersed AuNPs with approximately 4.30 nm using an in situ colloidal polyelectrolyte template strategy. The monodisperse polystyrene nanospheres accompanied by poly[(2-methacryloyloxyethyl)trimethylammonium chloride] brushes were first synthesized. Subsequently, the facile polymer-brush-engaged strategy for the synthesis of hollow SNPs@AuNPs involves in situ reduction of AuNPs, hydrolytic condensation of silica, and a chemical etching process. In combination with dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, X-ray powder diffraction, and Fourier transform infrared spectroscopy, the as-obtained polymer brushes were proven as effective versatile nanoreactors for the synthesis of AuNPs and silica nanoparticles without any catalysts. Benefiting from the structural advantages, the resultant hollow SNPs@AuNPs manifested superior catalytic activity and reusability for the reduction of p-nitrophenol by sodium borohydride in aqueous solution. With a delicate design, we believe that this synthetic strategy can be extended to fabricate multifunctional nanomaterials with diverse compositions, which would be of great interest in catalysis, energy, and many other important domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.