Abstract

The rational design of advanced electrocatalysts and energy-saving electrolysis strategies is highly desirable for achieving high-efficiency electrochemical H2 generation yet challenging. In this work, we report highly branched Pd hydride nanodendrites (PdH-NDs) formed by a very facial solvothermal method and a succedent chemical H intercalation method in N,N-dimethylformamide. The electrocatalytic performance of PdH-NDs is experimentally and theoretically correlated with the morphology and composition, which has demonstrated substantially enhanced electrochemical activity and stability for formate oxidation reaction and hydrogen evolution reaction in alkaline electrolyte compared with Pd nanodendrites. Density functional theory calculations suggest a downshift of the Pd d-band center of PdH-NDs due to the dominant Pd-H ligand effects that weaken the binding energies of the intermediate catalytic species and toxic carbon monoxide. The asymmetric formate electrolyzer based on bifunctional PdH-ND electrocatalysts is first constructed, which only requires a low voltage of 0.54 V at 10 mA cm-2 for continuous H2 generation. This study reveals significant insights about the morphology/composition-performance relationship for palladium hydrides with bifunctional electroactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call