Abstract
Oxygen (O2) in the air is a green oxidant, and utilization of air for pollutant removal is highly desired. Herein, we report the preparation and utilization of a novel biomass-based three-dimensional (3D) Ni@NiO/carbon composite for the electro-activation of O2 under room condition. The carbon-coated Ni@NiO nanoparticles are fabricated on a hierarchical 3D porous loofah sponge-derived carbon (LSC) support as the bifunctional catalyst for the activation of O2 via both the electro-oxidation and electro-reduction reactions. An electrocatalytic air oxidation coupling system is constructed with the Ni@NiO/LSC shell-core electrodes for pollutant degradation. A variety of organic pollutants, including pharmaceutics and personal care products (PPCPs), dyes, phenolic compounds, and real waters are mineralized by more than 60% with significantly enhanced biodegradability. Notably, the coupling system obtains high mineralization efficiency of 70.2 ± 1.9% on landfill leachate with significant biodegradability enhancement. The specific energy consumptions of the coupling system are only 6.8 ± 0.7 to 60.2 ± 3.6 kWh kg-TOC-1 in mineralizing different pollutants. The hollow structure of the LSC fibers endows the loaded Ni@NiO with superior intrinsic catalytic activity, which is associated with low reaction resistance and facile electron transfer. The Ni@NiO on LSC presents an electrocatalytic wet air oxidation (ECWAO) catalytic activity higher by 35.8% and cathodic air oxidation (CAO) catalytic activity higher by 22.7% as compared to that loaded on commercial graphite felt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.