Abstract

A new NiAlFe layered double hydroxide/polydopamine/polyvinylidene fluoride (NiAlFe LDH/PDA/PVDF) membrane was fabricated by in-situ growth of LDH on the PDA modified PVDF membrane. The as-prepared membrane possesses a nano/microscale rough structural surface and displays the superior wettability of superhydrophilicity in air and underwater superoleophobicity. Combining the favourable features of superwettability and hierarchical rough structure, the NiAlFe LDH/PDA/PVDF membrane could effectively separate a series of oil-in-water emulsions with high efficiency (>99%) and high permeation flux (925–1913 L m−2 h−1 bar−1). Besides, owing to the light harvest ability of NiAlFe LDH, the relevant membrane also can be applied as a photocatalysis paper for the light-driven treatment of antibiotic residue in aqueous solution. In which, NiAlFe LDH/PDA/PVDF membrane can effectively degrade typical antibiotic tetracycline within 20 min under UV light irradiation, exhibiting excellent photocatalytic activity. In addition, cyclic experiments demonstrate that NiAlFe LDH/PDA/PVDF membrane has excellent stability and reusability both in oil-in-water emulsion separation and photocatalytic reaction. In general, the findings of this research demonstrate that photo-response LDH modified membranes have potential multiple applications in wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call