Abstract

Herein, excellent non-volatile memory and aqueous battery properties of solution-processable nickel ferrite (NFO) nanomaterial were demonstrated. In the case of non-volatile memory property, the device operates on ±2 V resistive switching voltage and shows double valued charge-magnetic flux characteristics. Excellent endurance (103) and retention (104 s) non-volatile memory properties with a good memory window (103) were observed for NFO memristive device. The conduction and resistive switching mechanisms based on experimental data are provided. Furthermore, the present work investigates the electrochemical performance of the NFO thin film electrode in the different electrolytes (viz. Na2SO4, Li2SO4, and Na2SO4: Li2SO4). It was revealed that the NFO thin film shows improved electrochemical performance in Na2SO4 electrolyte with a high specific capacity of 18.56 mAh/g at 1 mA/cm2 current density. The electrochemical impedance spectroscopic results reveal that the NFO thin film electrode shows low series and charge transfer resistance values for Na2SO4 electrolyte than other electrolytes. The diffusion coefficient of different ions (DNa+, DLi+ and DNa+:Li+) were found to be 9.975 × 10−10 cm2 s−1, 3.292 × 10−11 cm2 s−1, 2 × 10−10 cm2 s−1, respectively. A high diffusion coefficient was found for Na+ ions, indicating rapid Na+ transport with NFO thin-film electrodes

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.