Abstract

Photocatalytic reduction of CO2 to useful fuel has been identified as a promising strategy to address the energy and environmental issues. Development of well-defined photocatalysts toward CO2 reduction has attracted increasing interest to gain insight into the reactive mechanism. Herein, by post-synthetic ligand exchange, a bifunctional Re-based metal–organic framework (MOF) was successfully prepared. It not only serves as a photosensitizer but also acts as a catalyst for photochemical reduction of CO2. Furthermore, it is found that a Re-based MOF containing 30% Re-based ligands displays improved activity compared to MOF with 100% Re-based ligands. This work provides clues to the design and synthesis of bifunctional MOFs toward photocatalytic CO2 reduction. A bifunctional UiO-67-Re was developed as a photocatalyst for CO2 reduction by post-synthetic ligand exchange strategy. Its synthesis and photocatalytic performance were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.