Abstract

Lithium-sulfur (Li-S) batteries are considered as promising candidates for next-generation batteries due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by several challenges, such as the polysulfide shuttle and the growth of lithium dendrites. Herein, we introduce a bifunctional K3PW12O40/graphene oxide-modified polypropylene separator (KPW/GO/PP) as a highly effective solution for mitigating polysulfide diffusion and protecting the lithium anode in Li-S batteries. By incorporating KPW into a densely stacked nanostructured graphene oxide (GO) barrier membrane, we synergistically capture and rapidly convert lithium polysulfides (LiPSs) electrochemically, thus effectively suppressing the shuttling effect. Moreover, the KPW/GO/PP separator can stabilize the lithium metal anode during cycling, suppress dendrite formation, and ensure a smooth and dense lithium metal surface, owing to regulated Li+ flux and uniform Li nucleation. Consequently, the constructed KPW/GO/PP separator delivered a favorable initial specific capacity (1006 mAh g-1) and remarkable cycling performance at 1.0 C (626 mAh g-1 for up to 500 cycles with a decay rate of 0.075% per cycle).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.