Abstract

Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the world. Misfolding of β-amyloid (Aβ) and α-synuclein (α-syn) and subsequent fibril formation are closely associated with the pathogenesis of AD and PD, respectively. Lentinan is a natural product commonly used in medicine and dietary supplements. It has potential antitumor, anti-inflammatory, and antiviral effects, but the underlying mechanism of its action on AD and PD remains unclear. In this study, lentinan inhibited the formation of Aβ and α-syn fibers in a dose-dependent manner and disrupted their mature fibers. Lentinan inhibited the conversion of Aβ and α-syn conformations to β-sheet-rich conformations. Additionally, lentinan protected Caenorhabditis elegans against damage caused by the accumulation of Aβ and α-syn aggregation and prolonged their lifespan. Notably, the beneficial effects of lentinan in AD and PD mice were also demonstrated, including ameliorating the cognitive and memory impairments in AD mice and behavioral deficits in PD mice. Finally, molecular interactions between lentinan and Aβ/α-syn pentamers were also explored using molecular docking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.