Abstract

The work provided a method for synthesizing a simple fluorescent molecularly imprinted polymer by surface-initiated atom transfer radical polymerization (SI-ATRP) and its application in real sample. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres were selected as a matrix, 4-vinylpyridine, ethylene glycol dimethacrylate, 2,4-dichlorophenoxyacetic acid (2,4-D) as functional monomer, cross-linker and template molecule, respectively, to fabricate MAR@MIP with core–shell structure. For comparison, carbon dot (CD) as a fluorescence source was synthesized with o-phenylenediamine and tryptophan as precursors via hydrothermal method and integrated into MIP to acquire MAR@CD-MIP. MAR@CD-NIP was also prepared without adding the template molecule. The adsorption capacity of MAR@CD-MIP reached 104 mg g−1 for 2,4-D, which was higher than that of MAR@MIP (60 mg g−1). However, the adsorption capacity of MAR@CD-NIP was only 13.2 mg g−1. The linear range of fluorescence detection for 2,4-D was 18–72 μmol/L, and the limit of detection (LOD) was 0.35 μmol/L. The fluorescent MAR@CD-MIP was successfully applied in enrichment of lettuce samples. The recoveries of the three spiked concentrations of 2,4-D in lettuce were tested by fluorescence spectrophotometry and ranged in 97.3–101.7 %. Meanwhile, the results were also verified by HPLC. As a result, bi-functional molecularly imprinted resin was successfully fabricated to detect and enrich 2,4-D in real samples, and exhibited good selectivity, sensitivity and great application prospect in food detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.