Abstract

Heterogeneous catalytic ozonation is regarded as a feasible technology in advanced wastewater treatment. Catalytic performance, mass transfer, and mechanical strength are the key elements for large-scale applications of catalysts. To optimize those elements, Fe was selected for its dual role in graphitization and catalytic ozonation. A Fe/N-doped micron-scale carbon-Al2O3 framework (CAF) was designed and applied to a fluidized catalytic process for the treatment of secondary effluent from coal gasification. The chemical oxygen demand removal rate constant and the hydroxyl radical generation efficiency (Rct) of the Fe/N-doped CAF were 190% and 429% higher than those of pure ozone, respectively. Theoretical calculations revealed that higher Fe valence promoted ozone decomposition, which implied increasing FeIII content for further catalyst optimization. The rate constant and Rct with a higher FeIII-proportion catalyst were increased by 13% and 16%, respectively, compared to those with the lower one. Molecular dynamics and density functional theory calculations were performed to analyze the reaction kinetics qualitatively and quantitatively. The energy barrier corresponding to FeIII configuration was 1.32 kcal mol-1, 27% lower than that for FeII configuration. These theoretical calculations guided the catalyst optimization and provided a novel solution for designing ozonation catalysts. The Fe/N-doped CAF demonstrated a great potential for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.