Abstract

The development of stable and efficient oxygen evolutional electrocatalysts is fundamental to the production of hydrogen by water electrolysis. However, so far the majority of electrocatalysts require a substantial overpotential (η) (approximately >250 mV) to catalyze the bottleneck oxygen evolution reaction (OER). To overcome this large overpotential for OER, herein we report the growth of nickel–cobalt–selenide (NiCoSe2) nanosheets over 3D nickel foam (NF) via a facile and scalable electrodeposition method. The resulting 3D NiCoSe2/NF hybrid electrode requires an overpotential of merely 183 mV to reach the current density (J) of 10 mA cm–2. To the best of our knowledge, this is the lowest η value reported so far for any earth-abundant material-based OER electrocatalyst to attain the same current density. Moreover, a significant reduction in Tafel slope (88 mV dec–1) is observed between bare NF and NiCoSe2/NF. Hence, as a result, the 3D hybrid NiCoSe2/NF OER electrode outperforms the previously reported ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call