Abstract

In the face of increasing energy demand, the approach of transformation that combines energy restructuring and environmental governance has become a popular research direction. As an important part of electrocatalytic reactions for gas molecules, reduction reactions of oxygen (ORR) and carbon dioxide (CO2RR) are very indispensable in the field of energy conversion and storage. However, the non-interchangeability and irreversibility of electrode materials have always been a challenge in electrocatalysis. Hereon, nickel and nitrogen decorated biomass carbon-based materials (Ni/N-BC) has been prepared by high temperature pyrolysis using agricultural waste straw as raw material. Surprisingly, it possesses abundant active sites and specific surface area as a bifunctional electrocatalyst for ORR and CO2RR. The three-dimensional porous cavity structure for the framework of biomass could not only provide a strong anchoring foundation for the active site, but also facilitate the transport and enrichment of reactants around the site. In addition, temperature modulation during the preparation process also optimizes the composition and structure of biomass carbon and nitrogen. Benefit from above structure and morphology advantages, Ni/N-BC-800 exhibits the superior electrocatalytic activity for both ORR and CO2RR simultaneously. More specifically, Ni/N-BC-800 exhibits satisfactory ORR activity in terms of initial potential and half wave potential, while also enables the production of CO under high selective. The research results provide ideas for the development and design of electrode materials and green electrocatalysts, and also expand new applications of agricultural waste in fields such as energy conversion, environmental protection, and resource utilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.