Abstract

The DNA-directed self-assembly of surface-bound layers of gold nanoparticles offers a broad range of applications in biomedical analyses as well as in materials science. We here describe a new concept for the assembly of substrate-bound nanoparticle monolayers which employs bifunctional nanoparticles as building blocks, containing two independently addressable DNA oligomer sequences. One of the sequences was utilized for attaching the particle at the solid support, while the other sequence was used to establish cross-links between adjacently immobilized particles. AFM analyses proved the functionality of inter-particle cross-links leading to enhanced surface coverages and the formation of monolayered supramolecular aggregates attached to the substrate. We anticipate that further refinement of this approach will enable applications, for instance, the assembly of ordered layers useful as transducers in biosensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.