Abstract
The activity of a nanozyme is closely related to its surface area-to-volume ratio and the surrounding temperature. To acquire highly active nanozymes, one-pot metallization-like synthesis of novel nanoflower-shaped photothermal nanostructures was conducted using polyadenine-containing diblock DNA as the scaffold. The nanoflower-shaped structures with a high surface area-to-volume ratio and photothermal performance exhibited excellent peroxidase-mimicking activity, and the biorecognition capability was retained by the capping agent of diblock DNA. The functionalized nanostructures were used for a proof-of-concept colorimetric assay of cancer cells in vitro. Upon incorporation of 808 nm laser irradiation, high sensitivity and selectivity for the cancer cell assay were achieved with the lowest detection level of 10 cells/mL. Relative to spherical gold nanostructures, the nanoflower-shaped photothermal nanozyme exhibited higher assay sensitivity, paving the way for the construction of nanozyme-based colorimetric sensors for point-of-care testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.