Abstract

A limitation of titanium implants is the rather poor bonding between the metal and the surrounding tissue. In this research, we aimed at developing functional peptides in the form of monomolecular coatings intended to improve adhesion between the native oxide of the metal (TiO2) and the calcium-phosphate mineralization layer with which it is in contact. Accordingly, a bifunctional peptide with a β-strand motif assumed to strongly bind to the oxide through two phosphorylated serine residues, both situated on the same face of the strand, was designed. The β-strand motif was extended by a mineralization "tail" composed of consecutive acidic amino acids capable of adsorbing calcium ions. This peptide was studied together with two additional control peptides, one serving to elucidate the role of the β-strand in stabilizing bonding with the oxide and the other demonstrating the ability of the tail to induce mineralization. The strong adsorption of the three peptides to the oxide surface was revealed by HPLC. That peptide presenting the mineralization tail showed the highest levels of adsorbed calcium and phosphate ions, as well as the largest area of cellular adherence, demonstrating its potential advantages for use with titanium implants in bone tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.