Abstract
Potassium (K) metal batteries have attracted great attention owing to their low price, widespread distribution, and comparable energy density. However, the arbitrary dendrite growth and side reactions of K metal are attributed to high environmental sensitivity, which is the Achilles' heel of its commercial development. Interface engineering between the current collector and K metal can tailor the surface properties for K-ion flux accommodation, dendrite growth inhibition, parasitic reaction suppression, etc. We have designed bifunctional layers via prepassivation, which can be recognized as an O/F-rich Sn-K alloy and a preformed solid-electrolyte interphase (SEI) layer. This Sn-K alloy with high substrate-related binding energy and Fermi level demonstrates strong potassiophilicity to homogeneously guide K metal deposition. Simultaneously, the preformed SEI layer can effectually eliminate side reactions initially, which is beneficial for the spatially and temporally KF-rich SEI layer on K metal. K metal deposition and protection can be implemented by the bifunctional layers, delivering great performance with a low nucleation overpotential of 0.066 V, a high average Coulombic efficiency of 99.1%, and durable stability of more than 900 h (1 mA cm-2, 1 mAh cm-2). Furthermore, the high-voltage platform, energy, and power densities of K metal batteries can be realized with a conventional Prussian blue analogue cathode. This work provides a paradigm to passivate fragile interfaces for alkali metal anodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.