Abstract

We introduce a multifractal optimal detrended fluctuation analysis to study the scaling properties of the one-dimensional Wolf-Villain (WV) model for surface growth. This model produces coarsened surface morphologies for long timescales (up to 10^{9} monolayers) and its universality class remains an open problem. Our results for the multifractal exponent τ(q) reveal an effective local roughness exponent consistent with a transient given by the molecular beam epitaxy (MBE) growth regime and Edwards-Wilkinson (EW) universality class for negative and positive q values, respectively. Therefore, although the results corroborate that long-wavelength fluctuations belong to the EW class in the hydrodynamic limit, as conjectured in the recent literature, a bifractal signature of the WV model with an MBE regime at short wavelengths was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.