Abstract

This paper presents a novel approach to synthesizing curved reflectarrays using Geometrical Optics (GO). It introduces the concepts of virtual normal and path length shift, which enable a vector-based formulation of the problem that can be solved using ray tracing techniques. The formulation is applied for the design of two different versions of a Dual Bifocal Reflectarray with a parabolic main surface and a flat subreflectarray. The first version aims to enhance the performance of the multibeam antenna by providing a focal ring located at the feed cluster plane. The second version focuses on improving the scanning characteristics of the antenna in the horizontal plane by incorporating two foci. The synthesis procedure yields samples of the path length shift or its derivatives. To reconstruct the phase distribution, an interpolation scheme is employed and described in this paper. Numerical results are presented for both the focal-ring and two-foci configurations, demonstrating the feasibility of this solution for multibeam or scanning satellite antennas operating in the Ka.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.