Abstract

Obesity and the associated chronic metabolic diseases (e.g., type-2 diabetes) adversely affect bone metabolism and health. Gut microbiota is considered to be involved in the pathophysiology of obesity and also represents a therapeutic target. This study has investigated the contribution of diet-induced obesity to alterations in bone health and metabolism and whether these could be restored by oral administration of Bifidobacterium pseudocatenulatum CECT 7765. To do so, adult male wild-type C57BL-6 mice were fed either a standard or high-fat diet (HFD), supplemented or not with B. pseudocatenulatum CECT 7765 (109 CFU/day) for 14 weeks. Effects on bone mass density (BMD), bone mineral content, bone remodeling, bone structure and gene expression were assessed. In HFD-fed mice, bone microstructural properties at the distal femur showed deteriorated trabecular architecture in bone volumetric fraction, trabecular number and trabecular pattern factor. Besides, the HFD reduced the volumetric bone mineral density in the trabecular bone, but not in the cortical bone. All these bone microstructural alterations found in obese mice were reversed by B. pseudocatenulatum CECT 7765. Administration of the bacterium increased (p < .05) the Wnt/β-catenin pathway gene expression, which could mediate effects on BMD. Bifidobacterium pseudocatenulatum CECT 7765 supplementation increased (p < .05) serum osteocalcin (OC, bone formation parameter), and decreased serum C-terminal telopeptide (CTX) (p < .01) and parathormone (PTH) (p < .05) (both bone resorption parameters). It also altered the microstructure of the femur. In summary, HFD interfered with the normal bone homeostasis leading to increased bone loss. In obese mice, B. pseudocatenulatum CECT 7765 lowered bone mass loss and enhanced BMD by decreasing bone resorption and increasing bone formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call