Abstract

Background/ObjectivesThe role of intestinal dysbiosis in obesity-associated systemic inflammation via the cross-talk with peripheral tissues is under debate. Our objective was to decipher the mechanisms by which intervention in the gut ecosystem with a specific Bifidobacterium strain reduces systemic inflammation and improves metabolic dysfunction in obese high-fat diet (HFD) fed mice.MethodsAdult male wild-type C57BL-6 mice were fed either a standard or HFD, supplemented with placebo or Bifidobacterium pseudocatenulatum CECT 7765, for 14 weeks. Lymphocytes, macrophages and cytokine/chemokine concentrations were quantified in blood, gut, liver and adipose tissue using bead-based multiplex assays. Biochemical parameters in serum were determined by ELISA and enzymatic assays. Histology was assessed by hematoxylin-eosin staining. Microbiota was analyzed by 16S rRNA gene pyrosequencing and quantitative PCR.Results B. pseudocatenulatum CECT 7765 reduced obesity-associated systemic inflammation by restoring the balance between regulatory T cells (Tregs) and B lymphocytes and reducing pro-inflammatory cytokines of adaptive (IL-17A) and innate (TNF-α) immunity and endotoxemia. In the gut, the bifidobacterial administration partially restored the HFD-induced alterations in microbiota, reducing abundances of Firmicutes and of LPS-producing Proteobacteria, paralleled to reductions in B cells, macrophages, and cytokines (IL-6, MCP-1, TNF-α, IL-17A), which could contribute to systemic effects. In adipose tissue, bifidobacterial administration reduced B cells whereas in liver the treatment increased Tregs and shifted different cytokines (MCP-1 plus ILP-10 in adipose tissue and INF-γ plus IL-1β in liver). In both tissues, the bifidobacteria reduced pro-inflammatory macrophages and, TNF-α and IL-17A concentrations. These effects were accompanied by reductions in body weight gain and in serum cholesterol, triglyceride, glucose and insulin levels and improved oral glucose tolerance and insulin sensitivity in obese mice.ConclusionsHere, we provide evidence of the immune cellular mechanisms by which the inflammatory cascade associated with diet-induced obesity is attenuated by the administration of a specific Bifidobacterium strain and that these effects are associated with modulation of gut microbiota structure.

Highlights

  • Obesity has become a major global health challenge due to its increasing prevalence and the associated health risks [1]

  • The bifidobacterial administration partially restored the high-fat diet (HFD)-induced alterations in microbiota, reducing abundances of Firmicutes and of LPS-producing Proteobacteria, paralleled to reductions in B cells, macrophages, and cytokines (IL-6, MCP-1, TNFα, IL-17A), which could contribute to systemic effects

  • We provide evidence of the immune cellular mechanisms by which the inflammatory cascade associated with diet-induced obesity is attenuated by the administration of a specific Bifidobacterium strain and that these effects are associated with modulation of gut microbiota structure

Read more

Summary

Introduction

Obesity has become a major global health challenge due to its increasing prevalence and the associated health risks [1]. The inflammatory process is characterized by infiltration of macrophages and lymphocytes in the adipose tissue and other peripheral organs. This is accompanied by an imbalance in the cytokine network with increased production of pro-inflammatory cytokines and adipokines, which contribute to associated metabolic dysfunctions, such as insulin resistance [3]. White adipose tissue has been considered the main contributor to systemic inflammation in obesity Inflammation of this tissue is mediated by increased infiltration of macrophages and the ratio of “classically activated macrophages” (M1) to “alternatively activated macrophages” (M2), which produced pro-inflammatory (e.g. TNF-α, IL-1β and IL-6) and anti-inflammatory (IL-10 and IL-4) cytokines, respectively [4]. Whether adipose tissue or intestinal inflammation is the origin of systemic inflammation associated with diet-induced obesity is under debate [8,9,11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call