Abstract

Bifidobacterium longum is frequently utilized and has broad prospects for preventing liver injury. The current research assessed the antioxidant capacity of B. longum BL-10 and probed its mechanism for ameliorating lipopolysaccharide (LPS)-induced acute liver injury (ALI). B. longum BL-10-encoded 15 antioxidant genes showed strong reducing power activity and scavenging activity of DPPH, hydroxyl radicals, and superoxide anions. The intragastric administration of B. longum BL-10 resulting in a marked reduction in liver function indicators (alanine aminotransferase, aspartate aminotransferase, total bilirubin, and total bile acid) and proinflammatory cytokines (TNF-α, IFN-γ, and IL-6) was indicative of ALI recovery. Following 16s RNA analysis, B. longum BL-10 significantly altered the richness of genera, as for the Escherichia-Shigella, Lachnospiraceae_NK4A136_group, and Clostridia_UCG-014, dramatically contributing to the formation of acetic acid and butyric acid. Meanwhile, their metabolites regulated the TLR4/NF-κB signaling pathways to alleviate hepatic injury symptoms. Overall, all the results demonstrated that B. longum BL-10 had excellent efficiency in preventing LPS-induced ALI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.