Abstract
Bifidobacteria constitute a substantial proportion of the human gut microbiota. There are currently many bifidobacterial strains with claimed probiotic attributes. The mechanism through which these strains reside within their host and exert benefits to the host is far from fully understood. We have shown in the case of Bifidobacterium breve UCC2003 that a cell surface exopolysaccharide (EPS) plays a role in in vivo persistence. Biosynthesis of two possible EPSs is controlled by a bidirectional gene cluster which guides alternate EPS synthesis by means of a reorienting promoter. The presence of EPS impacts on host immune response: the wild type, EPS-positive B. breve UCC2003 efficiently evades the adaptive B-cell host response, while its isogenic, EPS-deficient equivalent elicits a strong adaptive immune response. Functionally, EPS positive strains were more resilient to presence of acid and bile and were responsible for reduced colonization levels of Citrobacter rodentium, a gut pathogen. In conclusion, we have found that EPS is important in host interactions and pathogen protection, the latter indicative of a probiotic ability for the EPS of B. breve UCC2003.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.