Abstract

Despite the anatomical separation, strong evidence suggested a bidirectional association between gut microbiota and central nervous system. Cross-talk between gut microbiota and brain has an important role in the pathophysiology of neurodegenerative disorders and regenerative processes. However, choosing the appropriate probiotics and combination therapy of probiotics to provide a synergistic effect is very crucial. In the present study, we investigated the effect of Lactobacillus casei (L. casei) and Bifidobacterium breve (B. breve) on alternation performance, oxidant/antioxidant biomarkers, the extent of demyelination, and the expression level of HO-1, Nrf-2, Olig2, MBP, PDGFRα, and BDNF in cuprizone (CPZ)-induced demyelination model of rat corpus callosum. In order to induce this model, rats received oral administration of CPZ 0.6% w/w in corn oil for 28days. Then, L. casei, B. breve, or their combinations were orally administrated for 28days. Y maze test was performed to investigate the alternation performance. Oxidant/antioxidant biomarkers were determined by colorimetric methods. Extent of demyelination was investigated using FluoroMyelin staining. The genes' expression levels of antioxidant and myelin lineage cells were assessed by quantitative real time PCR. The results showed the probiotics supplementation significantly improve the alternation performance and antioxidant capacity in demyelinated corpus callosum. Interestingly, B. breve supplementation alleviated demyelination and oxidative stress levels more than the administration of L. casei alone or the combination of two probiotics. These observations suggest that B. breve could provide a supplementary strategy for the treatment of multiple sclerosis by increasing antioxidant capacity and remyelination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call