Abstract

This paper reports a thorough microstructural investigation of bismuth ferrite (BFO) thin films subjected to various processing conditions and discusses their influence on the stability of the BiFeO3 perovskite phase. The formation of secondary phases in BFO thin films is studied as a function of annealing temperature and time, film thickness, Bi excess, and Ti substitution. While films annealed at 600 °C consist of the desired BiFeO3 phase, higher temperatures induce the decomposition leading to a significant amount of secondary phases, particularly the iron-rich Bi2Fe4O9 phase. A longer annealing time at 700 °C further enhances the decomposition of BiFeO3. Qualitative microstructural analysis of the films is performed by electron backscattered diffraction which provides phase analysis of individual grains. The morphology of the single-crystalline Bi2Fe4O9 grains that are embedded in the BiFeO3 matrix drastically changes as a function of the film thickness. Nucleation of these Bi2Fe4O9 grains probably occurs at the film/substrate interface, after which grain growth continues toward the surface of the film through the depletion of the BFO phase. Addition of Bi excess or the substitution of Fe with Ti in the precursor solutions significantly reduces the formation of an iron-rich secondary phase. Influence of the secondary phases as well as Ti substitution on magnetic properties of BFO films was investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call