Abstract

The development of Perovskite oxide photocatalysts with superior dye degradation efficiency under solar light irradiation has gained attention in recent years, owing to their extraordinary flexibility, chemical composition, and tunability. Herein, we report the facile synthesis of a novel ternary composite composed of BiFeO3 (BFO) perovskite, g-C3N4, and functionalized carbon nanofibers (f-CNF), referred to as BFO/g-C3N4/f-CNF using a simple solution method as a photocatalyst to accelerate the degradation of methylene blue dye. Detailed structural and microstructural features confirm the formation of a ternary composite composed of BFO nanoparticles and f-CNFs mounted on g-C3N4 nanosheets. The photocatalytic activity of the sample for the degradation of methylene blue dye was studied in solar light using UV–visible spectroscopy. The BFO/g-C3N4/f-CNF ternary composite displays excellent photocatalytic activity with a degradation rate of 87 % after illumination for 120 min under solar light than BFO, g-C3N4, and binary composites BFO/g-C3N4 and BFO/f-CNF. The highest rate constant (k = 0.01675 min−1) for BFO/g-C3N4/f-CNF further confirms improved photocatalytic efficiency. The red shift in the UV–visible absorption spectrum of BFO/g-C3N4/f-CNF indicates a reduced band gap (1.9 eV) compared to that of pure BFO (2.28 eV) and g-C3N4 ( 2.72 eV). A decrease in the photoluminescence intensity of the ternary composite compared to that of BFO indicates the inhibition of photoexcited electron recombination which results in the availability of more charge carriers for the photocatalytic process. The enhanced efficiency of BFO/g-C3N4/f-CNF can be explained by the synergistic effect between BFO and g-C3N4 and the incorporation of f-CNF further promotes the migration rate of electrons from BFO to g-C3N4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call